
4-BROMO-3, 3-DIMETHYL-1-BUTENE: A NEW PROBE FOR RADICAL INTERMEDIATES IN REACTIONS IN STRONGLY BASIC MEDIA

Martin Newcomb*¹, William G. Williams, and Elizabeth L. Crumpacker Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA

<u>Summary</u>: The preparation, isolation and purification of the title bromide (1) are described, and the application of 1 as a mechanistic probe is demonstrated in the metal--halogen interchange reaction with tert-butyllithium.

Mechanistic probes are becoming increasing popular tools for studies of the details of reactions which might involve free radical intermediates.² In studies in strongly basic or nucleophilic media, two well characterized radical rearrangements, the cyclopropylcarbinyl ring opening and the 5-hexen-1-yl cyclization, have been widely exploited. However, the probes used, the cyclopropylcarbinyl halides (2) and 6-halo-1-hexenes (3), are inherently flawed for studies in such media. For example, the cyclopropylcarbinyl halides apparently react with trialkyltin anionoids in what is the equivalent of a homo-S_N2 reaction (Eq 1),³ and the 6-halo-1-hexenes and their various analogs might suffer metal--halogen exchange in strongly basic media to give acyclic organometals **4** which can cyclize to cyclopentylcarbinylmetals (Eq 2).⁴ In each case a false positive test for a radical intermediate results.

Thus, the recently reported, fast rearrangement^{5,6} of the 2,2-dimethyl-3-buten-l-yl radical (6) to the 2-methyl-4-penten-2-yl radical (7) was well received. It was apparent that 4-bromo-3,3-dimethyl-1-butene (1) could be quite useful as a mechanistic probe for reactions in strongly basic media. Formation of radical 6 from this probe could, after rearrangement, lead to products from radical 7, but, if an organometal reagent is formed from 1, rearranged products would not be expected (Scheme 2 in ref 6). As an added attraction, the neopentyl-like structure of probe 1 will lead to slow S_N^2 reactions and no E2 reactions; the probe is open to reactions with nucleophiles by single electron transfer (SET) or attack at halogen.

Bromide 1 was prepared from 2,2-dimethyl-3-buten-1-ol $(8)^7$ by a conventional method,⁸ but our initial attempts to distill 1 failed to give the product even when a vacuum transfer was attempted. Apparently bromide 1 reacted with triphenylphosphine when the reaction mixture became concentrated. Dilution of the reaction mixture with a high boiling solvent followed by flash distillation afforded crude 1 which was purified by preparative gc. The survival of 1 on the gc column demonstrated that the compound is inherently robust. Bromide 1 (>98% pure by analytical gc) was characterized by its ¹H NMR spectrum and high resolution mass spectrum.⁹

<u>Procedure:</u> To alcohol **8** (0.10 mol) and Ph_3P (0.12 mol) in 70 mL of CH_2Cl_2 at 0 °C was added CBr_4 (0.11 mol) in portions. The mixture was allowed to warm to 25 °C over 2 h and was then diluted with 100 mL of tetraglyme. Flash distillation (25-70 °C bath, 4 Torr) gave crude 1 (ca. 65% yield) which was purified by preparative gc (0V-101 on Chromosorb G, 140 °C).

To test the utility of bromide 1 as a mechanistic probe, we applied it in the metal-halogen interchange reaction with tert-butyllithium. Despite numerous studies, the mechanistic course of such reactions remains an open question.¹⁰ A recent study of the reactions of tert-butyllithium with various halides including 6-halo-1-hexene probes led to the conclusion that the reactions proceeded predominantly via SET pathways, 11 but the major pathway for cyclization from the 6-halo-1-hexenes is now known to be the anionic route shown in Eq 2.12When bromide 1 was treated with tert-butyllithium in ether--pentane or THF--pentane at -23 °C according to the reported procedure for the 6-halo-1-hexene reactions, 11 we obtained low vields of the rearranged product 4-methy1-1-pentene (13% and 7%, respectively). The product mixtures were complicated, containing coupling products from the probe and organolithium reagent, and it is clear that further studies are required. Nevertheless, the detection of 4methyl-l-pentene suggests a lower limit for the extent of radical formation of ca. 10% in these reactions. Thus, an SET process or another route to alkyl radicals is required as at least a minor pathway in the reaction of bromide 1 with tert-butyllithium. Further, our detection of unrearranged 3,3-dimethy1-1-butene in 20-30% yield in reactions in THF--pentane requires that either (1) a metal-halogen exchange pathway not involving free radicals exists, (2) radical $\mathbf{6}$ was reduced in a bimolecular reaction which has a rate constant greater than 1×1 10⁷ M⁻¹ sec⁻¹ at -23 °C, or (3) radical **7** was reduced to an organolithium species which then rearranged to 2,2-dimethy1-3-buten-1-yllithium; we are now studying these possibilities.

In conclusion, the availability of 4-bromo-3,3-dimethyl-1-butene coupled with the well characterized, fast rearrangement of radical **6** formed from this probe^{5,6} suggests numerous applications of the probe. It should be especially useful in studies where 6-halo-1-hexenes and their analogs have been shown to give cyclic products in reactions with bases or nucleo-philes since radical **6** rearranges 20 times faster than 5-hexen-1-yl at 25 °C.⁶ It is to be hoped that the application of probes such as **1** will help clarify the confused situation regarding possible SET pathways in reactions of alkyl halides with strong bases/nucleophiles.

Acknowledgement: We thank the donors to the Petroleum Research Fund, administered by the American Chemical Society, and the Robert A. Welch Foundation for financial support.

References and Notes

1. Camille and Henry Dreyfus Teacher-Scholar, 1980-1985.

Beckwith, A. L. J.; Ingold, K. U. in "Rearrangements in Ground and Excited States", Vol.
Mayo, P. d. Ed., Academic Press, New York, 1980, Essay 4. (b) Surzur, J.-M. in "Reactive Intermediates", Vol. 2, Abramovitch, R. A. Ed., Plenum Press, New York, 1982, Chap. 3.
Newcomb, M.; Smith, M. G. J. Organomet. Chem. 1982, 228, 61-70. Alnajjar, M. S.; Smith,

G. F.; Kuivila, H. G. J. Org. Chem. 1984, 49, 1271-1276.

4. This possibility and its mechanistic significance are discussed in ref 2b.

5. Chatgilialoglu, C.; Ingold, K. U.; Tse-Sheepy, I.; Warkentin, J. <u>Can. J. Chem.</u> 1982, <u>61</u>, 1077-1081.

6. Newcomb, M.; Williams, W. G. accompanying communication in this issue.

7. Bly, R. S.; Swindell, R. T. J. Org. Chem. 1965, 30, 10-22.

8. Beckwith, A. L. J.; Easton, C. J.; Lawrence, T.; Serelis, A. K. <u>Aust. J. Chem.</u> 1983, <u>36</u>, 545-556.

- 9. NMR: (CDCl₃) 1.13 (s, 6H), 3.30 (s, 2H), 4.9-5.2 (m, 2H), 5.7-6.0 (d of d, 1H).
- MS: (Chemical Ionization) Calcd for $C_6H_{11}Br$; m/e 162.00438. Found; m/e 162.00446. 10. The mechanistic possibilities have been discussed in detail recently.¹¹
- 11. Bailey, W. F.; Gagnier, R. P.; Patricia, J. J. <u>J. Org. Chem.</u> 1984, <u>49</u>, 2098-2107.

12. Bailey, W. F.; Patricia, J. J. private communication. We are indebted to Professor Bailey and Mr. Patricia for disclosing this crucial observation to us prior to publication.

(Received in USA 14 November 1984)